38 research outputs found

    Investigating the structure of active galactic nuclei : the dusty torus

    Get PDF
    Active galactic nuclei Nowadays it is widely accepted that every massive galaxy harbors a supermassive black hole (SMBH) at its center. A number of apparent correlations between SMBH mass and host galaxy structural and dynamical properties have been observed. The correlation between the masses of SMBHs and their host galactic bulges suggest a link between their growth (Kormendy & Richstone, 1995; Kormendy & Gebhardt, 2001). Active galactic nucleus (AGN) represents a phase in the life of a galaxy, during which the SMBH growth is directly observable. The term AGN encompasses a variety of energetic phenomena in galactic centers triggered by the matter spiralling into a SMBH at a relatively high rate. The radiation coming from AGNs originates in the conversion of gravitational potential energy into thermal energy as matter spirals towards the SMBH through an accretion disk (Lynden- Bell, 1969). Their luminosity can be up to 10000 greater then the total luminosity of a normal galaxy. The radiated AGN continuum covers a broad range of spectrum, from the X to radio domain, it is partially polarized and variable in time. Radiation from the central engine is ionizing the surrounding medium, creating conditions for the strong emission line spectrum, superimposed on the continuum. Sometimes, highly collimated and fast outflows (“jets”) emerge perpendicular to the accretion disk. Since the discovery of Keel (1980) that the orientation of Seyfert 1 galaxies is not random, it xxx has been recognized that the appearance of an AGN varies with the viewing angle. This has led to the picture of “orientation unification” (see Antonucci, 1993; Urry & Padovani, 1995) where the structure of AGNs is believed to be basically similar but what we see is a strong function of orientation (see Fig. 9). In this unified model, the central black hole is surrounded by a geometrically-thin accretion disk which is the source of the strong X-ray emission and UV/optical continuum (see Jovanovic, 2012, and references therein). Above and below the disk is the broad-line region (BLR), turbulent, rapidly-moving, dense, emission-line gas orbiting the black hole (see Gaskell, 2009, for a review). Both the accretion disk and the BLR are surrounded by a geometrically- and optically-thick, roughly toroidal structure of dust and gas (the “dusty torus”), which is absorbing the incoming radiation and re-emitting it in the infrared (IR). In addition to these components there is lower density, more slowly moving gas present on a scale similar to or significantly larger than that of the torus. This gas can be seen when it is illuminated by the cone of ionizing radiation emanating from inside the torus. It is a source of narrow emission lines and thus is know as the “narrow-line region” (NLR). The broad emission lines and the thermal continuum emission can only be seen when the torus is close to faceon and thus, such an object appears as a type 1 active galaxy. Close to edge-on orientations, the dusty torus blocks the radiation coming from the accretion disk and BLR. In this case an UV/optical bump and broad emission lines are absent and an object appears as a type 2 active galaxy. If jet of matter, ejected perpendicular to the accretion disk is present, then viewing such an object along the jet would exhibit strong non-thermal, polarized and rapidly variable continuum. The masses of SMBHs can be readily estimated in some types of AGN, (Dibai, 1977) and AGNs are currently our only way of studying the evolution of SMBHs over cosmic time. Furthermore, the brightest AGNs are the most luminous quasi-steady compact sources of radiation in the universe and hence they are valuable probes of cosmic evolution up to very high redshifts. In order to understand black hole growth across cosmic time and the connection between galaxies and black holes, we need to understand how AGNs work. We need to test the basic picture outlined above and, in particular, to be able to explain observations which presently challenge this picture and might force modifications of it

    Dissecting the active galactic nucleus in Circinus -- I. Peculiar mid-IR morphology explained by a dusty hollow cone

    Get PDF
    Recent high angular resolution observations resolved for the first time the mid-infrared (MIR) structure of nearby active galactic nuclei (AGN). Surprisingly, they revealed that a major fraction of their MIR emission comes from the polar regions. This is at odds with the expectation based on AGN unification, which postulates a dusty torus in the equatorial region. The nearby, archetypical AGN in the Circinus galaxy offers one of the best opportunities to study the MIR emission in greater detail. New, high quality MIR images obtained with the upgraded VISIR instrument at the Very Large Telescope show that the previously detected bar-like structure extends up to at least 40 pc on both sides of the nucleus along the edges of the ionization cone. Motivated by observations across a wide wavelength range and on different spatial scales, we propose a phenomenological dust emission model for the AGN in the Circinus galaxy consisting of a compact dusty disk and a large-scale dusty cone shell, illuminated by a tilted accretion disk with an anisotropic emission pattern. Undertaking detailed radiative transfer simulations, we demonstrate that such a model is able to explain the peculiar MIR morphology and account for the entire IR spectral energy distribution. Our results call for caution when attributing dust emission of unresolved sources entirely to the torus and warrant further investigation of the MIR emission in the polar regions of AGN.Comment: Accepted to MNRAS. Version 2: typos correcte

    The AGN dusty torus as a clumpy two-phase medium: radiative transfer modeling with SKIRT

    Full text link
    We modeled the AGN dusty torus as a clumpy two-phase medium, with high-density clumps embedded in a low-density interclump dust. To obtain spectral energy distributions and images of the torus at different wavelengths, we employed the 3D Monte Carlo radiative transfer code SKIRT. Apart from the grid of two-phase models, we calculated the corresponding sets of clumps-only models and models with a smooth dust distribution for comparison. We found that the most striking feature of the two-phase model is that it might offer a natural solution to the common issue reported in a number of papers -- the observed excess of the near-infrared emission.Comment: Proceedings of the Torus Workshop 2012 held at the University of Texas at San Antonio, 5-7 December 2012. C. Packham, R. Mason, and A. Alonso-Herrero (eds.). 8 pages, 5 figures. A grid of model SEDs available at https://sites.google.com/site/skirtorus

    Gravitational microlensing of AGN dusty tori

    Get PDF
    We investigated the gravitational microlensing of active galactic nucleus dusty tori in the case of lensed quasars in the infrared domain. The dusty torus is modeled as a clumpy two-phase medium. To obtain spectral energy distributions and images of tori at different wavelengths, we used the 3D Monte Carlo radiative transfer code SKIRT. A ray-shooting technique has been used to calculate microlensing magnification maps. We simulated microlensing by the stars in the lens galaxy for different configurations of the lensed system and different values of the torus parameters, in order to estimate (a) amplitudes and timescales of high magnification events, and (b) the influence of geometrical and physical properties of dusty tori on light curves in the infrared domain. We found that, despite their large size, dusty tori could be significantly affected by microlensing in some cases, especially in the near-infrared domain (rest-frame). The very long time-scales of such events, in the range from several decades to hundreds of years, are limiting the practical use of this method to study the properties of dusty tori. However, our results indicate that, when studying flux ratios between the images in different wavebands of lensed quasars, one should not disregard the possibility that the near and mid-infrared flux ratios could be under the influence of microlensing.Comment: 10 pages, 6 figures, 1 table, MNRAS accepted. V3: corrected values in Table

    Polarization in Monte Carlo radiative transfer and dust scattering polarization signatures of spiral galaxies

    Get PDF
    Polarization is an important tool to further the understanding of interstellar dust and the sources behind it. In this paper we describe our implementation of polarization that is due to scattering of light by spherical grains and electrons in the dust Monte Carlo radiative transfer code SKIRT. In contrast to the implementations of other Monte Carlo radiative transfer codes, ours uses co-moving reference frames that rely solely on the scattering processes. It fully supports the peel-off mechanism that is crucial for the efficient calculation of images in 3D Monte Carlo codes. We develop reproducible test cases that push the limits of our code. The results of our program are validated by comparison with analytically calculated solutions. Additionally, we compare results of our code to previously published results. We apply our method to models of dusty spiral galaxies at near-infrared and optical wavelengths. We calculate polarization degree maps and show them to contain signatures that trace characteristics of the dust arms independent of the inclination or rotation of the galaxy

    AGN Dusty Tori as a Clumpy Two-Phase Medium: The 10 Micron Silicate Feature

    Full text link
    We investigated the emission of active galactic nuclei dusty tori in the infrared domain, with a focus on the 10 micron silicate feature. We modeled the dusty torus as a clumpy two-phase medium with high-density clumps and a low-density medium filling the space between the clumps. We employed a three-dimensional radiative transfer code to obtain spectral energy distributions and images of tori at different wavelengths. We calculated a grid of models for different parameters and analyzed the influence of these parameters on the shape of the mid-infrared emission. A corresponding set of clumps-only models and models with a smooth dust distribution is calculated for comparison. We found that the dust distribution, the optical depth and a random arrangement of clumps in the innermost region, all have an impact on the shape and strength of the silicate feature. The 10 micron silicate feature can be suppressed for some parameters, but models with smooth dust distribution are also able to produce a wide range of the silicate feature strength.Comment: 5 pages, 2 figures. Proceedings of the "8th Serbian Conference on Spectral Line Shapes in Astrophysics", Divcibare, Serbia, June 6-10 2011. Model SEDs available for download at https://sites.google.com/site/skirtorus

    The dust covering factor in active galactic nuclei

    Get PDF
    The primary source of emission of active galactic nuclei (AGNs), the accretion disc, is surrounded by an optically and geometrically thick dusty structure ('the so-called dusty torus'). The infrared radiation emitted by the dust is nothing but a reprocessed fraction of the accretion disc emission, so the ratio of the torus to the AGN luminosity (L-torus/L-AGN) should corresponds to the fraction of the sky obscured by dust, i.e. the covering factor. We undertook a critical investigation of the L-torus/L-AGN as the dust covering factor proxy. Using state-of-the-art 3D Monte Carlo radiative transfer code, we calculated a grid of spectral energy distributions (SEDs) emitted by the clumpy two-phase dusty structure. With this grid of SEDs, we studied the relation between L-torus/L-AGN and the dust covering factor for different parameters of the torus. We found that in the case of type 1 AGNs the torus anisotropy makes L-torus/L-AGN underestimate low covering factors and overestimate high covering factors. In type 2 AGNs L-torus/L-AGN always underestimates covering factors. Our results provide a novel easy-to-use method to account for anisotropy and obtain correct covering factors. Using two samples from the literature, we demonstrated the importance of our result for inferring the obscured AGN fraction. We found that after the anisotropy is properly accounted for, the dust covering factors show very weak dependence on L-AGN, with values in the range of approximate to 0.6-0.7. Our results also suggest a higher fraction of obscured AGNs at high luminosities than those found by X-ray surveys, in part owing to the presence of a Compton-thick AGN population predicted by population synthesis models

    Dissecting the active galactic nucleus in Circinus -- II. A thin dusty disc and a polar outflow on parsec scales

    Get PDF
    Recent observations which resolved the mid-infrared (MIR) emission of nearby active galactic nuclei (AGN), surprisingly revealed that their dust emission appears prominently extended in the polar direction, at odds with the expectations from the canonical dusty torus. This polar dust, tentatively associated with dusty winds driven by radiation pressure, is found to have a major contribution to the MIR flux from scales of a few to hundreds of parsecs. When facing a potential change of paradigm, case studies of objects with the best intrinsic resolution are essential. One such source with a clear detection of polar dust is a nearby, well-known AGN in the Circinus galaxy. In the first paper, we successfully explained the peculiar MIR morphology of Circinus observed on large, tens of parsec scales with a model consisting of a compact dusty disc and an extended hollow dusty cone. In this work, we further refine the model on smaller, parsecs scales to test whether it can also explain the MIR interferometric data. We find that a model composed of a thin dusty disc seen almost edge-on and a polar outflow in the form of a hyperboloid shell can reproduce well the VLTI/MIDI observations at all wavelengths, baselines and position angles. In contrast, while providing a good fit to the integrated MIR spectrum, the dusty torus model fails to reproduce the spatially resolved interferometric data. We put forth the disc++hyperboloid wind model of Circinus AGN as a prototype for the dust structure in the AGN population with polar dust.Comment: MNRAS accepte

    The narrow Fe Kα\alpha line and the molecular torus in active galactic nuclei - an IR/X-ray view

    Get PDF
    The narrow component of the iron Kα\alpha is an almost ubiquitous feature in the X-ray spectra of active galactic nuclei (AGN) and is believed to originate in neutral material, possibly located in the molecular torus. This would imply a tight connection between the Fe Kα\alpha equivalent width (EW) and the physical properties of the torus. In a recent work we have shown that the decrease of the covering factor of the torus with the luminosity, as expected by luminosity-dependent unification models, would be able to explain the decrease of Fe Kα\alpha EW with the luminosity (i.e., the X-ray Baldwin effect). Recent developments in the study of the mid-IR (MIR) spectrum of AGN allow important parameters of the torus to be deduced, such as its covering factor (f obsf_{\rm\,obs}) and equatorial column density (N H TN_{\rm\,H}^{\rm\,T}), by applying clumpy torus models. Using XMM-Newton/EPIC observations of a sample of 24 type-I AGN, we investigate the relation between the physical parameters of the torus obtained by recent MIR works and the properties of the Fe Kα\alpha line. We correct the values of the Fe Kα\alpha EW by taking the inclination angle, the photon index, the equatorial column density, and half-opening angle of the torus into account using a physical torus model of X-ray reprocessed radiation. We find that the relation between Fe Kα\alpha EW and f obsf_{\rm\,obs} shows a slope that is consistent with the expected value, albeit with a low statistical significance. A trend that is consistent with the theoretical prediction is also found when comparing the Fe Kα\alpha EW to N H TN_{\rm\,H}^{\rm\,T}. Our work seems to confirm that the bulk of the narrow Fe Kα\alpha line is produced by the same material responsible for the MIR emission.Comment: A&A in press, 15 pages, 5 Figures, 3 tables - Few references update

    Spatial field reconstruction with INLA: Application to simulated galaxies

    Full text link
    Aims. Monte Carlo Radiative Transfer (MCRT) simulations are a powerful tool for understanding the role of dust in astrophysical systems and its influence on observations. However, due to the strong coupling of the radiation field and medium across the whole computational domain, the problem is non-local and non-linear and such simulations are computationally expensive in case of realistic 3D inhomogeneous dust distributions. We explore a novel technique for post-processing MCRT output to reduce the total computational run time by enhancing the output of computationally less expensive simulations of lower-quality. Methods. We combine principal component analysis (PCA) and non-negative matrix factorization (NMF) as dimensionality reduction techniques together with Gaussian Markov random fields and the Integrated nested Laplace approximation (INLA), an approximate method for Bayesian inference, to detect and reconstruct the non-random spatial structure in the images of lower signal-to-noise or with missing data. Results. We test our methodology using synthetic observations of a galaxy from the SKIRT Auriga project - a suite of high resolution magneto-hydrodynamic Milky Way-sized galaxies simulated in cosmological environment by 'zoom-in' technique. With this approach, we are able to reproduce high photon number reference images ∌5\sim5 times faster with median residuals below ∌20%\sim20\%.Comment: To be published in Numerical methods and codes of Astronomy and Astrophysic
    corecore